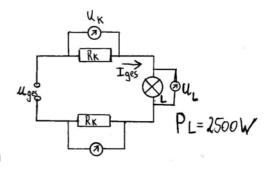
Mathematische Herleitung einer Formel zum Berechnen der Verlustleistung aus den Größen


U_{ges} = Netzspannung, in Volt, das kann auch mal kleiner als 230 V sein

I = Leitungslänge in Meter

A = Querschnitt des Kabel in mm²

ρ = Materialkonstante in $\frac{Ωmm^2}{m}$ z.B. Kupfer = 0,017 $\frac{Ωmm^2}{m}$

P_L = Gesamtnennleistung (= also auf die Nennspannung bezogen) der angeschlossenen Lasten

Wir brauchen die Verlustleistung Pv, sie wird berechnet nach

$$P_V = 2P_K$$
 (Hin- und Rückleitung!) $P_K = U_K * I_{ges}$

Hier sind aber weder U_K noch I_{ges} bekannt. Da aber gilt $U_K = R_K * I_{ges}$ ersetzen wir U_K durch $R_K * I_{ges}$ und erhalten die folgende Gleichung $P_V = R_K * I_{ges} * I_{ges}$. Das lässt sich zusammenfassen in: $P_V = 2*(R_K*I_{ges}^2)$

 R_K können wir aus den Angaben errechnen, das folgt später. Betrachten wir I_{ges} . Sie ließe sich berechnen, wenn wir den Gesamtwiderstand kennen würden, denn aus $R_{ges} = \frac{U_{ges}}{I_{ges}}$ folgt

 $I_{\it ges} = {U_{\it ges} \over R_{\it ges}}$. $U_{\it ges}$ ist genannt und der Gesamtwiderstand lässt sich auch berechnen, das ist die Summe alle Widerstände in diesem Stromkreis.

Ersetzen wir also I_{ges} durch $\frac{U_{ges}}{R_{ges}}$ dann erhalten wir:

$$P_{V}=2*(R_{K}*(\frac{U_{ges}}{R_{ges}})^{2})$$
 Kümmern wir uns um R_{ges}! Wir ersetzen jetzt R_{ges} durch die

Elemente, die den Gesamtwiderstand bilden, nämlich zweimal das Kabel und den Widerstand der Gesamtlast, und es wird R_{ges} = R_{κ} + R_{L} + R_{κ} = 2 R_{κ} + R_{L} und erhalten:

$$P_{V}=2*ig(R_{K}*ig(rac{U_{ges}}{2R_{K}+R_{L}}ig)^{2}ig)$$
 Damit kommen wir dem Endergebnis langsam näher, denn

wir kennen die Gesamtnennleistung und die Nennspannung mit deren Hilfe wir R_L berechnen

können. $R_L = \frac{U_{Nenn}^2}{P_{Nenn}}$, es wird nun statt R_L der Term $\frac{U_{Nenn}^2}{P_{Nenn}}$ verwendet und wir erhalten

$$P_V = 2*(R_K*(rac{U_{ges}}{2R_K+rac{U_{Nenn}}{P_{Nenn}}})^2)$$
 sieht kompliziert aus, ist es aber nicht. Jetzt müssen

wir das noch unbekannte R_K durch die gegebenen Größen I = Leitungslänge in Meter, A = Querschnitt des Kabel in mm² und ρ = Materialkonstante in $\frac{\Omega \, mm^2}{m}$ ausdrücken.

$$R_{K} = \rho * \frac{l}{A}$$
 dann eingesetzt ergibt $P_{V} = 2 * \left(\frac{\rho * l}{A} * \left(\frac{U_{ges}}{2\rho * \frac{l}{A} + \frac{U_{Nenn}}{P}}\right)^{2}\right)$

Fertig, das war es!!!